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Abstract
Photoelectron diffraction patterns of a large portion of the 2π solid angle
above a surface may be used for direct structure determination schemes such
as holography. It is shown that the particular experimental set-up of near-
node photoelectron holography greatly improves the quality of holographically
obtained three-dimensional images of atomic arrangements. In the near-node
set-up the diffraction patterns are recorded at an emission angle near the node of
a photoelectron source wave and forward scattering is suppressed. 24 distinct
atomic sites were observed for the test case of Al 2s (Ekin = 952 eV) diffraction
from Al(111). The physics of photoelectron source waves is recapitulated and
the holographic inversion procedure that is based on the multipole expansion
is outlined.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Angle-scanned Auger electron and x-ray photoelectron diffraction (AED, XPD) significantly
progressed when the diffraction patterns were measured and displayed as 2π -scans, i.e. for
all emission directions above the surface [1]. The first substrate XPD 2π -scan was presented
by Baird et al [2] but for the next decade only a few papers with the same approach appeared
[3, 4]. Fully automated angle-scanning experiments by Frank et al [5], Seelmann-Eggebert
and Richter [6] and Osterwalder et al [1] finally demonstrated the usefulness of such data
acquisitions and representations: for electron kinetic energies above 500 eV they allow an
immediate interpretation of the intensity distributions as forward-scattering features, i.e. as
two-dimensional projections of nuclear charge around the emitter. In figure 1 an XPD 2π -
scan for Rh(111) is shown in stereographic projection. The intensity of the Rh 3d5/2 core
level is displayed on a linear greyscale, where white indicates the maximum intensity. For the
electron kinetic energy of 947 eV which corresponds to an electron wavelength of 0.4 Å, the
diffraction pattern is dominated by forward scattering. For the case of Rh with fcc structure
it is most prominent along the 〈110〉-like densely packed atomic chains at a polar angle of
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Figure 1. An XPD 2π -scan of Rh(111) in stereographic projection. The intensity of the Rh 3d5/2
core level (Ekin = 947 eV) is displayed on a linear greyscale. Data from reference [7].

35.3◦. Harp, Saldin and Tonner were the first to interpret such experimental 2π -scans as
holograms [8]. It became clear, however, that data of the kind shown in figure 1 are more
reliable for interpretation as two-dimensional projections of atoms.

Holography as proposed by Gabor [9] is a solution of the phase problem in diffraction
experiments. In structure determination it will keep its prominent role at least for the first
guess before other phase-recovery algorithms, as e.g. discussed in this Special Issue in the
contributions of Marks, Saldin and Tong, are applied. The success of holographic inversions,
i.e. reconstruction of three-dimensional structures, relies on the quality of the diffraction
intensity maps (holograms) which should carry a maximum of the necessary phase information.
In this article the ‘near-node photoelectron holography’ approach [10] is outlined. It is a kind
of ‘inside-source’ holography [11] where the experimental geometry for the recording of the
holograms is optimized in the sense that one single coherent reference wave is used on routes
where disturbing effects like zero-order diffraction or multiple scattering are minimized.

Szöke’s concept for ‘inside-source’ holography [11] (see figure 2) proposes that x-rays
or electrons which are created at atomic sites form a hologram in Gabor’s sense [9]. After
the emission process, the ‘coherent beam’ splits into an unscattered reference wave �r and a
scattered object wave �o that interfere in the detector. The measured intensity I (k) can thus
be written as

I (k) = |�r +�o|2 = �r�
�
r +�r�

�
o +�o�

�
r +�o�

�
o (1)

where k is the wave vector of the reference and the object waves. The intensities of a large
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Figure 2. The principle of photoelectron holography as proposed by Szöke [11]. The path-length
difference between the unscattered reference wave �r and the scattered object wave �o leads to
interference. The phase shift δφ(d, θ, k, Z) between �r and �o is a function of the distance d
between the emitter and the scatterer, the scattering angle θ , the wave vector k and the scatterer
potential which is given by its nuclear charge Z. The intensity distribution I (k) = |�r + �o|2 in
a large portion of k-space is a hologram. From this hologram and the knowledge of the reference
wave �r , the object wave �o in the near field of the emitter may be reconstructed.

set of k-vectors constitute a hologram and permit the reconstruction of an image U(r) which
maps the surrounding of the emitter in real space. This is realized by the Helmholtz–Kirchhoff
theorem which reconstructs the near field around the emitter from its far field I (k) [12]. The
object wave �o contains a single-scattering and a multiple-scattering term: �o = �ss +�ms .
The �r��

ss + �ss��
r terms contain the information on the spatial arrangement of the object.

If the multiple-scattering term�ms is small compared to the single-scattering term�ss , �r��
r

is known and the object self-interference term �o�
�
o is small, then U(r) is determined by

the Fourier transform of I (k), i.e. from the interference terms �r��
o + �o��

r . These inter-
ference terms contain an image and a twin image, and methods exist to distinguish between
the two [13]. For three-dimensional images, the k-space sample has to span three dimensions.
This is achieved by scanning two emission angles (see figure 1) and/or |k| (multiple-energy
sampling).

Inside-source holography with x-rays [14] and its time-reversed sister with γ -rays [15]
have been demonstrated. These kinds of holography apply for heavy elements as scatterers
and emitters and for a probed volume which is fairly large. Inside-source holography with
electrons is more sensitive, in particular to light elements, and applications with particular
emitter geometries have been reported [16]. However, several problems are encountered: in
the relevant electron kinetic energy range, the scattering cross section of electrons is of the
order of 1 Å2 and highly anisotropic. The dominant feature of this anisotropy is forward
scattering, which is a consequence of the focusing by the attractive ion cores of an incoming
electron wave along its k-vector [17]. Forward scattering hinders holography because it is
a zero-order diffraction feature that contains no information on the path-length differences
between the scattered and the unscattered waves.

The anisotropy of a photoelectron source wave, however, may be used in order to suppress
forward scattering [10,18]. If the photoelectron intensity is measured at an angle close to a node
of a photoelectron p wave, the corresponding photoelectron diffractograms may be interpreted
as holograms and the holographic reconstruction yields three-dimensional pictures with a
high quality.
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Section 2 is a tutorial on photoelectron source waves and its manifestations in experiments
are discussed. In section 3 the concept of near-node photoelectron holography and the first
proof-of-principle experiments are reviewed. In the appendix the multipole expansion for
2π -scans and its implementation for holographic reconstructions are outlined.

2. The source wave in photoelectron diffraction

The interaction of a photon with an atom breaks its spherical symmetry. If the photon energy
exceeds the binding energy of a particular electron level a photoelectron may be emitted. This
photoelectron is described as a spherical wave which propagates away from the point where the
photoelectron hole was created. The photoemission process is very localized in space and time
and provides a perfectly coherent point-source wave. For a 1 keV photoelectron (λ = 0.4 Å)
with lifetime broadening of e.g. 100 meV, this translates into a coherence length (�c = λ2/�λ)
of 0.7 µm. This shows that for all practical purposes the coherence length of the source wave
is not a limiting factor. In solids it is rather the inelastic mean free path that limits the volume
that is probed by such electron waves. It is of the order of 15 Å and increases above 200 eV
roughly ∝√

E whereE is the kinetic energy of the electrons. In general a photoelectron source
wave is not isotropic. This is in contrast to e.g. the case for an Auger electron, where isotropic
electron emission is expected as long as spherically symmetric electron shells are involved in
the Auger transition [19]. The anisotropy of the photoelectron source wave may be exploited
if the direction and polarization of the light are controlled. In photoelectron diffraction this is
e.g. used to selectively enhance the sensitivity of the method (see section 2.2).

2.1. The dipole selection rules

The angular momentum character of the photoelectron final state is determined from the dipole
selection rules. In non-relativistic notation we find

�f = �i ± 1 � � 0 (2)

where h̄�f and h̄�i are the angular momenta of the final and the initial state. For the magnetic
quantum numberm (|m| � �) we find, with the quantization axis along the direction of photon
propagation,

mf = mi (3)

for linearly polarized light and

mf = mi ± 1 (4)

for right or left circularly polarized light, respectively.
For convenience we use in the following � = �i and m = mf . The individual 2� + 1

magnetic subshell transitions add incoherently, while the � + 1 and �− 1 final states interfere
for the 2�− 1 magnetic subshell transitions with � + 1 and �− 1 contributions. The mixing is
determined by the radial matrix elements R�−1,m and R�+1,m whose phases are shifted by the
continuum orbital phase shift δ�±1 [20].

For kr 
 � we get the source wave as

�source ∝ eikr

r
(R�+1,mY�+1,m(θ, φ) + R�−1,mY�−1,m(θ, φ)) (5)

whereY�m are spherical harmonics. For the simplest case, i.e. the excitation of an s level,R�−1,m

does not exist and we get a pure p wave with a node along the propagation direction of the
light. This is true as long as no relativistic effects come into play [21]. In figure 3 the situation
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Figure 3. Visualization of a photoelectron wave as excited from an atomic s level. The spherically
symmetric s level in (a) is excited by a photon which produces a light-polarization-dependent p
source wave (Y11 + exp(iϕ)Y1−1) (b). Note the creation of a node along the direction of prop-
agation of the light. In (c)–(e) the constant-phase planes (wave hills) of the photoelectron wave for
left, right and x-polarized light are shown. Classical electron trajectories are orthogonal to these
phase planes.

is illustrated. For circularly polarized light the angular momentum of the photoelectron
promotes the photoelectrons on handed spiral trajectories while linearly polarized light ejects
the electrons preferentially along the direction of the polarization vector A.

For a closed shell the angular dependence of the photoemission intensity for linearly
polarized light is given by

dσn�
d'

= σn�

4π
(1 + βn�P2(cos γ )) (6)

where σn� is the total photoemission cross section and βn� the asymmetry parameter; these
depend on the energy of the photoelectron and the angular momentum of the initial state [22].
P2(cos γ ) is the second Legendre polynomial 1

2 (3 cos2 γ − 1) and γ is the angle between
the light polarization vector A and the detector. The asymmetry parameters βn� describe the
branching in the � + 1 and the �− 1 channel and were e.g. tabulated by Yeh and Lindau [22].
Far above the ionization threshold the radial matrix element R�+1 tends to be larger than R�−1.
For |R�+1/R�−1| � 1 we get β� = (� + 2)/(2� + 1). For the emission from an s level, a pure
p wave is excited and β�=0 ≡ 2 follows. This means that the source wave from an s level has a
node. As is shown in section 3, the existence of such a node may be used to switch off forward
scattering [18].

2.2. Experimental findings

The electron source wave strongly affects angle-scanned electron diffraction patterns. This
may e.g. be used for the experimental determination of the source-wave character (�,m), as
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was e.g. done for Al LVV Auger transitions [19]. In figure 4 experimental electron diffraction
2π -scans are compared with single-scattering calculations that take the angular momentum
character of the electron source wave into account. It is seen that the crystal acts as a filter
which produces distinct diffraction patterns for different source waves. The differences in
the diffraction patterns in figure 4 cannot be explained by the different electron wavelengths
(energies) alone. The fact that the wavefronts of source waves with differentm impinge under
different angles on a scatterer strongly affects the diffraction patterns. The influence of the
source wave is particularly strong at low electron energies [23,24]. It has to be noted that such
effects do occur also for isotropic emissions like in an Auger decay [19], since the diffraction
pattern of an isotropic source with �-character depends on the 2� + 1 individual source waves
which contribute incoherently to the diffraction pattern.

Al (001) 2  scans  , Si K ,  < 4°

a) b) c) EXPERIMENT

 d) e)
SSC THEORY

f)

1s (180 eV) L*VV (85 eV) LVV (70 eV)

INTENSITY

[100]

(001)

Figure 4. Stereographically projected experimental and theoretical maps of photoelectron and
Auger electron emission intensities above an Al(001) surface for Al 1s (Ekin = 180 eV), Al L∗VV
(Ekin = 85 eV) and Al LVV (Ekin = 70 eV) transitions. The single-scattering cluster calculations
take the angular momentum character into account. For the photoemission p-wave final states in
the correct light incidence geometry and for the Auger emission, incoherent isotropic s, p, d waves
with best-fit weights of 0.08, 0.67, 0.25 for L∗VV and 0.24, 0.26, 0.50 for LVV were used. From
reference [19].

The angle of incidence and the polarization dependence of the photoelectron source wave,
i.e. its anisotropic nature, may be exploited for structure determination. Experiments that
investigated the influence of the light polarization on XPD patterns date back to 1984 when
Sincović et al examined the difference between s- and p-polarized light on the S 1s diffraction
patterns in the c(2 × 2)S/Ni(001) system at grazing electron emission angles [25]. Daimon
et al demonstrated that the position of a forward-scattering peak depends on the source wave.
In figure 5 their photoelectron diffraction data with right or left circularly polarized light
from Si(001) are shown. Clearly, an angular splitting of the Si 2p forward-scattering peaks is
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observed [26]. This splitting and the knowledge of the angular momentum difference of the
photoelectrons bears the potential for allowing the determination of the distance between the
emitter and the scatterer. Only recently has this idea been further developed into a new method
of stereoscopic microscopy for the investigation of atomic arrangements [27].

a) b)

Figure 5. Si 2p photoelectron diffraction patterns from Si(001) with a fixed azimuthal orientation.
The electron kinetic energy is 250 eV. Photoemission by (a) left and (b) right circularly polarized
light. The crosses mark calculated forward-focusing peaks. Clearly the rotations of the patterns
due to the different photon angular momenta can be seen. From reference [26].

The source waves act as directed searchlights which illuminate the object selectively. This
was e.g. applied by Sambi and Granozzi in order to get a better sensitivity with respect to the
determination of the layer relaxation [28]. A light incidence geometry where the photon’s A-
vector points nearly in the electron’s exit direction was used by Li and Tong in order to enhance
the surface signal for electron emission holography [29]. Only recently, Oelsner and Fecher
proposed a new holographic scheme which involves the circular dichroism in order to recover
the phase information from an angle-scanned photoelectron diffraction experiment [30].

3. Near-node photoelectron holography

Near-node photoelectron holography is an optimized form of inside-source holography [10,18].
The concept of near-node photoelectron holography is based on the anisotropic nature of
photoelectron source waves and minimizes forward and multiple scattering. At electron
kinetic energies above 500 eV, forward scattering is the strongest scattering feature in Auger
electron and photoelectron diffraction. Forward scattering is a zero-order diffraction feature
and has no holographic information. When forward scattering dominates, multiple scattering
is most prominent along forward-scattering directions. Therefore the minimization of forward
scattering minimizes multiple scattering as well [31]. In this section the basic idea of near-node
photoelectron holography is reviewed. After theoretical considerations the first experimental
confirmation of the validity of near-node photoelectron diffraction is reported.
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3.1. Theory

The key quantity for the estimation of the importance of multiple scattering is the elastic mean
free path λe = 1/nσe, where n is the atom density and σe the elastic scattering cross section
that is calculated from the optical theorem:

σe = 4π

k
�f (ϑ = 0). (7)

2π/k is the wavelength of the electrons and �f (ϑ = 0) is the imaginary part of the forward-
scattering amplitude. From the optical theorem (equation (7)) and the de Broglie relation
k = √

2meE/h̄, it is seen that the elastic mean free path scales with
√
E and is inversely

proportional to the forward-scattering amplitude. E is the kinetic energy and me the mass of
the electron. In aluminium we thus get for electrons with a kinetic energy of 1 keV an elastic
mean free path λe of 14 Å or five nearest-neighbour distances. From this relatively large
number it follows that multiple scattering should not strongly interfere with the holographic
reconstructions as long as molecular objects with a size <λe are investigated. The forward
scattering is, however, ubiquitous for any emitter below the top layer and produces artifacts in
holographic reconstructions from the very first coordination shell, i.e. very close to the emitter.
From equations (A.3) and (A.5) in the appendix it is seen that a forward-scattering peak with
a width of 20◦, for example, produces artifacts in the image function for r > 0.7 Å.

At first glance, forward scattering seems to be an intrinsic feature of photoelectron
diffraction, at least if the emitter does not lie in the top layer. There is, however, a way around
this problem if the anisotropic nature of the photoelectron source wave is exploited [10]. In
a single-scattering picture, the photoelectron diffraction intensity I (k) (equation (1)) may be
written as

I (k) = |�source(ϑ ≡ 0,R) +
∑
i

f (ϑi)

|R − ri |�source(ϑi, ri )|
2 (8)

where the emitter (source) sits at the origin, R is the position of the detector (in the direction
of k) and ri is the location of the scatterer (object) i. f (ϑi) is the complex scattering
amplitude and ϑi is the angle between ri and R. �source(ϑ ≡ 0,R) = A(ϑ = 0)/R is
the reference wave �r with the arbitrary phase zero and an intensity ∝ A2. �source(ϑi, ri ) =
(A(ϑi, ϕi)/ri) exp(irik (1 − cosϑi)) contains the phase factor exp(irik (1 − cosϑi)) with the
holographic information. Accordingly, the importance of forward scattering, ϑi = 0, scales
with the intensity A2 of the reference wave. Therefore the Fraunhofer condition |�r | � |�o|
can generally not be optimized in electron holography since it would cause strong forward
scattering. If the source wave is isotropic, i.e. A(ϑ, ϕ) = constant, the relative weight of
the forward scattering is constant. For anisotropic source waves, such as a p wave that is
created by the photoexcitation of an s level, the relative importance of the reference wave and
thus the weight of forward scattering can be tuned. From the considerations in section 2 it is
furthermore seen that the photoexcitation of an s level with a defined light polarization A is the
best choice for a source wave in photoelectron holography, since then the diffraction pattern
is constituted by a single source wave, i.e. Y1,m.

In figure 6, simulated XPD single-scattering patterns from a C 1s excited CO molecule
are shown as a function of the angle γ between the plane of polarization and the detector.
The forward scattering along the CO axis decreases ∝ cos2 γ and the relative weight of
the interference features passes a maximum near the node. If e.g. the electron emission
direction lies on a node of the photoemission source wave, no forward scattering is expected.
However, within the single-scattering picture, such photoelectron diffraction patterns cannot
be considered as holograms, since the reference wave is missing in this geometry. For 1 keV
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Figure 6. Theoretical C 1s (956 eV) x-ray photoelectron diffraction patterns from a CO molecule
as depicted in the inset. For small angles γ between the direction of the x-rays and the electron
detector, the forward scattering dominates, while for angles near the node (close to 90◦), the
interference fringes are most prominent. Data from reference [18].

electrons it was shown by scattering calculations that there is an optimum angle of about 10◦

(γ = 80◦) near the nodal plane of an outgoing p wave, where the holographic reconstructions
are best [10]. This angle is a compromise between the effect of the disturbing object self-
interference term�o��

o and that of the forward and multiple scattering. In figure 7, the far-node
geometry is compared with the near-node geometry. The figure shows simulated photoelectron
diffraction patterns and the corresponding holographic reconstructions for a single emitter and
a single scatterer. In the near-node geometry, the relative weight of the interference pattern is
strongly enhanced compared to that for the forward scattering. The holographic reconstruction
from the diffraction pattern in the far-node geometry shows ‘fingers’ that correspond to the
forward-scattering cone in the photoelectron diffraction near field. On the other hand, the
diffraction data in the near-node geometry show ‘droplet’ features near the atomic site of
the scatterer and its twin image. It has to be noted that near-node photoelectron holography
requires a constant angle γ between the detector and the light polarization. Otherwise the
near-node condition is not fulfilled for all emission directions. Therefore, in experiments of
this kind, the sample has to be rotated with respect to the reference frame of the light source
and the detector.

3.2. Experiments

The first near-node photoelectron holography experiments were performed on an Al(111)
surface [37]. The face-centred cubic (fcc) structure of aluminium with a nearest-neighbour
distance of 2.86 Å is known and the inversion symmetry of the fcc structure causes the twin
image to coincide with the image. With a photon energy of 1070 eV the Al 2s electron
wavelength becomes 0.4 Å. Two orientations of the linear light polarization were used. In the
near-node geometry the angle γ between the detector and the polarization was set to 80◦ and
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Figure 7. Photoelectron holography for the far- and near-node geometries. γ is the angle between
the light polarization and the electron detector. Two configurations of a p source wave are indicated
in (a) for the far-node geometry (γ = 0◦) and in (b) for the near-node geometry (γ = 80◦). The Al 2s
emitter (inside source) (λ = 0.4 Å) is 2.86 Å away from the Al scatterer. The diffraction patterns in
(c) and (d) are simulated with single-scattering calculations: they show the photoelectron diffraction
intensity stereographically projected into the hemisphere above the surface with γ kept constant.
In (c) the forward scattering along the emitter scatterer axis (bright spot) clearly dominates. In
(d) the higher-order diffraction fringes are strongly enhanced compared to those for the forward
scattering. In (e) and (f ) the corresponding holographic reconstructions |rU(r)|2 are shown in
three-dimensional isointensity representation. While the reconstruction from far-node diffraction
shows ‘finger’-like forward-scattering cones, the near-node reconstruction indicates the atomic site
at r and its twin at −r. From reference [38].

in the far-node geometry it was set to 0◦. The far-node-geometry data served for comparison
and the absolute determination of the crystal orientation. In order to remove the polar angle
dependence of the instrumental response function, the azimuthal data sets (figures 8(a) and
8(c)) are normalized for every polar emission angle.
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Figure 8. Comparison of far-node and near-node photoelectron diffraction data and their
holographic reconstructions. (a), (c) Stereographically projected experimental Al 2s (Ekin =
942 eV) photoelectron diffraction patterns from an Al(111) single crystal for the far-node and the
near-node geometry. In the far-node geometry (a), forward scattering dominates the pattern as can
be seen from the stereographic projection of the high-density crystal chains and planes in (b). In
the near-node diffraction pattern (hologram), no distinct forward-scattering features are visible.
(d), (f ) Corresponding holographic real-space reconstructions of a plane parallel to the surface that
contains the emitter (inside source) at (0, 0). They should show the expected image of an Al(111)
plane (e). In the near-node reconstruction (f ) nearest, next-nearest and second-nearest neighbours
are clearly resolved as local maxima, while in the far-node picture (d) no clear atom positions can
be seen. From reference [37].

The angle-dependent Al 2s photoemission intensities for the far-node and the near-node
geometry are stereographically projected in figures 8(a) and 8(c). White corresponds to the
highest and black the lowest intensity. From comparison with figure 8(b) which shows the
corresponding real-space projection of a fcc crystal onto the (111) plane, it is seen that the
far-node diffraction pattern can be regarded as a projection of nuclear charge along the nearest-
neighbour directions. The forward scattering focuses intensity along nearest-neighbour
directions and thus causes high intensity along low-index atomic chains and planes [17]. This
correspondence is not seen in the near-node diffraction pattern (figure 8(c)) and thus indicates
suppression of forward scattering. From the diffraction patterns, real-space images of the
emitter’s environment were produced with the Stuck algorithm [36] (see the appendix). Care
was taken by considering an apodizing function that smooths the edges of the diffraction
patterns. This avoids unwanted high-frequency components, i.e. artifacts in the Fourier
transform. The image function |rU(r)|2 is shown after a convolution with a Gaussian with
1 Å full width at half-maximum, without any low-intensity cut-off. In the near-node geometry,
the holographic reconstruction of real space around the emitter in the (111) plane clearly
reveals the positions of the surrounding atoms. In figure 8(f ) nearest-, next-nearest- and even
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second-nearest-neighbour positions are resolved as local maxima in the image. This is not
the case for the far-node geometry data, where instead of distinct atomic positions a ‘nearest-
neighbour belt’ is found. As usual with inside-source holography, the emitter sits at the origin
of the image and is not reproduced.

In figure 9, three-dimensional images of the holographic reconstructions of the data
in figures 8(a) and 8(c) are displayed [37]. The convoluted image functions are shown
within a sphere around the emitter with 8 Å diameter. Intensities greater than 80% of the
maximum intensity are displayed as opaque. Here it becomes even more obvious that the
far-node diffraction data do not produce three-dimensional pictures of atomic sites. In order
to compensate for the truncation of the nearest-neighbour shells in the top layers, the image
function has been multiplied by a factor of exp(|z|/.) where |z| is the distance from the
emitter plane normal to the surface and . is the inelastic mean free path. From the data
in figure 8(c) the three-dimensional structure of the twelve nearest neighbours around the
emitter is recovered. In figure 9(b), the expected ABC stacking of subsequent (111) planes
in the fcc structure is correctly reproduced. The holographic image is, however, not very
precise as regards the absolute length. This is caused by the atomic scattering phase shifts
that imply larger and anisotropic ‘effective’ scattering paths. All nearest-neighbour distances
in figure 9(b) are overestimated by about one wavelength, but in a fairly isotropic way. The
twelve emitter–nearest-neighbour distances scatter by 0.1 Å around the mean value of 3.4 Å
(instead of 2.86 Å as expected from the fcc structure of aluminium). In summary, figures 8(f )
and 9(b) indicate that the near-node photoelectron holography resolves in this case 24 different
atomic positions without applying any correction schemes. There have also been experiments
performed with a second photoelectron energy which resolved the first coordination shell as
well, at the correct atomic positions [31].

1 Å1 Å

a b

Figure 9. Three-dimensional isointensity representations of the holographic image as reconstructed
from the photoelectron diffraction data in figures 8(a) and 8(c). The atomic environment of an Al 2s
photoemitter at (0, 0, 0) in Al(111) is shown inside a shell with 4 Å radius. (a) Reconstruction from
the standard geometry data (figure 8(a)) that indicates forward-scattering cones. (b) Reconstruction
of the near-node photoelectron diffraction data which reproduces the expected atomic positions.
From reference [39].

These findings demonstrate that the atomic structure of molecular objects with a size of
the order of 10 Å can be explored with near-node photoelectron holography. The chemical
sensitivity of core-level photoemission and the exploitation of the anisotropy of its source
wave present an opportunity for structure determination in large unit cells with complicated
molecular structures.
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Appendix. Inverting the data with the Stuck algorithm

In the following, a short summary of Stuck’s solution of the Helmholtz–Kirchhoff theorem for
the holographic inversion of full hemispherical 2π -scans is given [33, 34, 36]. The procedure
is based on the multipole expansion as known e.g. from classical electrodynamics [40].

A1. Multipole expansion of 2π photoelectron diffraction data

It is convenient to expand an intensity distribution I (θ, φ) as it is measured in a full hemi-
spherical photoelectron diffraction experiment (see figure 1) into its multipole expansion
coefficients a�m [40]:

I (θ, φ) =
�max∑
�=0

�∑
m=−�

a�mY�m(θ, φ) (A.1)

where Y�m are the normalized spherical harmonics (e.g. Y11 = √
3/8π sin(θ) exp(iφ) or

Y00 = 1/
√

4π ). The multipole coefficients a�m are found from the integrals

a�m =
∫

4π
I (θ, φ)Y ∗

�m(θ, φ) d'. (A.2)

Since I (θ, φ) is real we have to calculate the integral (A.2) for m � 0 only. The coefficients
a�m for negative m are given by a�−m = (−1)ma∗

�m. In our problem, I (θ, φ) is known for the
hemisphere above the surface 0 � θ < π/2. If we assume point symmetry, i.e. set for the
hemisphere below the surface I (θ, φ) = I (π − θ, π + φ), equation (A.2) has to be solved
for even � only, since Y�m(θ, φ) = (−1)�Y�m(π − θ, π + φ). For a given cut-off �max in the
multipole expansion (equation (A.1)), the symmetry of the problem reduces the calculational
effort from (�max + 1)2 over 4π to 2(�max/2 + 1)2 over 2π or by roughly a factor of 4. The
cut-off �max is given by the sampling density of I (θ, φ) and the angular resolution. The solid
angle of a cone with a full-width opening angle�ϑ of 1◦ fills e.g. the hemisphere 26 000 times
where for small �ϑ the sampling density goes as �ϑ−2. The sampling theorem of discrete
Fourier transforms and the azimuthal factors exp(imφ) of the Y�m give an upper limit �max :

�max � π

�ϑ
. (A.3)

In figure A1 the amplitudes of the multipole expansion coefficients of the Cu 3s (Ekin =
1365 eV) photoelectron diffraction data from a Cu(110) surface are shown in an m versus
� diagram. It can be seen that the twofold rotational symmetry of the diffraction pattern
is reflected in the large contribution of the twofold-symmetric Y�m where m is even. As is
demonstrated in figure A2, the a�m may be used for an efficient filtering and for the subtraction
of the instrumental response function which is a function of the emission angle θ . The response
function is a smooth, Gaussian-like function and is constituted by coefficients a�0 with small
�. In figure A2(b) the data from figure A2(a) are shown for the multipole expansion with an
�max of 60. This greatly reduces the noise in the data. In figure A2(c), a0,0, a2,0, . . . , a12,0 are
set to zero, which removes the instrumental response function.
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Figure A1. Multipole expansion coefficients a�m of the 2π -scan in figure A2(a). The amplitudes
of the a�m are displayed on a truncated linear greyscale where white corresponds to a�m = 0 and
black to values |a�m| � 3 × 10−3a00. Note: only coefficients a�m with even � and 0 � m � � are
calculated and displayed. The dominance of the a�m with even m indicates the twofold rotational
symmetry of the Cu(110) 2π -scan in figure A2(a).

(110) (110)

[001] [001] [001]a b c

Figure A2. Filtering effects of different multipole coefficients. (a) Raw data from a Cu 3s
Ekin = 1365 eV 2π -scan of Cu(110). (b) I (θ, φ) from the coefficients a�m with � � 60. (c) After
removal of an ‘instrumental response function’, setting a�0 = 0 ∀� � 12. From [41].

A2. The Fourier transform

As was shown by Stuck et al the multipole expansion (equation (A.1)) is a perfect starting
point for the reconstruction of the photoelectron near field from the measured far field [36].
The scalar wave field U(r) in the vicinity of the emitter is

U(r) ∝
�max∑
�=1

(i)−�j�(kr)
�∑

m=−�
a�mY�m(α, β) (A.4)
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where j�(kr) are the spherical Bessel functions (j0(x) = sin(x)/x), k is the electron wave
vector andY�m are the spherical harmonics. Here r ,α andβ are the spherical coordinates, i.e. the
magnitude, the polar and azimuthal angles of r with respect to the emitter. Equation (A.4) is the
Fourier transform of I (θ, φ) (see equation (A.1)). It can also be considered as the reconstruction
of the wave field using Huygens’ principle [36]. Note that the first sum in equation (A.4) runs
from � = 1 only, which is equivalent to the holographic inversion of the conventionally used
image functionχ ∝ I (θ, φ)−I0 where I0 is the average intensity. From the known coefficients
a�m and equation (A.4), the holographic image function |rU(r)|2 may be calculated. U(r) is
multiplied by r in order to get an image intensity which is independent of |r|. The function
|rU(r)|2 is large at atomic positions (scattering centres) and has strong sin2(kr) modulations
from the Bessel functions. These modulations are removed by a convenient convolution with
a full width at half-maximum >λ.

It is instructive to discuss the function U(r) = U(z) along the surface normal (α = 0).
Equation (A.4) simplifies to

U(z) ∝
�max∑
�=1

√
(2� + 1)a�0(i)

−�j�(kz).

We see that the m �= 0 components do not contribute to U(z), since for these spherical
harmonics

∫
2π Y�m(θ, φ) dφ vanishes [34,36]. This important result is equivalent to the finding

of Saldin et al [42], who pointed out that the distance r of a scatterer may be found by Fourier
transformation of the azimuthally averaged intensity around the direction of r. Of course, this
statement must be valid for an arbitrary direction (α �= 0, β) of r, but then, the new coefficients
a′
�0(α, β) have to be calculated from the a�m(θφ).

Using the multipole expansion formalism, the issue of ‘reach’ and angular resolution for
angle-scanned photoelectron holography may be discussed. The spherical Bessel functions
make their strongest contribution to the image at kr ≈ 2 + � [40]. From this, it is directly seen
that the coefficients a�m with small � contribute to the image in the vicinity of the emitter and
those with large � to the image far away. Thus, �max limits the ‘reach’ Rmax of photoelectron
holography to

Rmax ∼ 2 + �max
k

(A.5)

and with this and equation (A.3) we find for 1000 eV photoelectrons and an angular resolution
�ϑ of 2◦ that

Rmax ≈ π

�ϑ k
≈ 6 Å.
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[32] Tonner B P, Han Z-L, Harp G R and Saldin D K 1991 Phys. Rev. B 42 14 423
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